Morphing

14 May 2015

Warping, morphing, mosaic

 Slides from Durand and Freeman (MIT), Efros (CMU, Berkeley), Szeliski (MSR), Seitz (UW), Lowe (UBC)

http://szeliski.org/Book/

Morphing

Recovering Transformations

- > What if we know *f* and *g* and want to recover the transform *T*?
 - > Let user provide correspondences
 - » How many do we need?

Translation: # Correspondences?

- > How many correspondences needed for translation?
- > How many Degrees of Freedom?
- > What is the transformation matrix?

$$M = \begin{bmatrix} 1 & 0 & p'_x - p_x \\ 0 & 1 & p'_y - p_y \\ 0 & 0 & 1 \end{bmatrix}$$
[Efros]

Euclidian: # Correspondences?

- How many correspondences needed for translation + rotation?
- How many DOF?

Affine: # Correspondences?

- > How many correspondences needed for affine?
- How many DOF?

Projective: # Correspondences?

- > How many correspondences needed for projective?
- > How many DOF?

Example: Warping Triangles

- Given two triangles: ABC and A'B'C' in 2D (12 numbers)
- > Need to find transform *T* to transfer all pixels from one to the other.
- > What kind of transformation is T?
- > How can we compute the transformation matrix:

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

q

Warping Triangles

Don't forget to move the origin too!

Image Warping

Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Forward Warping

- > Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image
 - Q: What if pixel lands "between" two pixels?

Forward Warping

>

- > Send each pixel *f*(*x*,*y*) to its corresponding location
 - (x',y') = T(x,y) in the second image
 - Q: What if pixel lands "between" two pixels?
 - A: Distribute color among neighboring pixels (x',y')

Inverse Warping

- Get each pixel g(x',y') from its corresponding location
 (x,y) = T⁻¹(x',y') in the first image
- Q: What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel g(x',y') from its corresponding location
 (x,y) = T⁻¹(x',y') in the first image
- Q: What if pixel comes from "between" two pixels?
- A: Interpolate color value from neighbors
 - nearest neighbor, bilinear, Gaussian, bicubic

Linear Interpolation

What's the average of P and Q?

Linear Interpolation (Affine Combination): New point aP + bQ, defined only when a+b = 1So aP+bQ = aP+(1-a)Q

Bilinear Interpolation

> Sampling at f(x,y):

(

$$(i, j + 1) (i + 1, j + 1)$$

$$(x, y)$$

$$(i, j) (i + 1, j)$$

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

Forward vs. Inverse Warping

- > Q: Which is better?
- > A: Usually inverse—eliminates holes
 - However, it requires an invertible warp function—not always possible...

Morphing = Object Averaging

- > The aim is to find "an average" between two objects
 - > Not an average of two <u>images of objects</u>...
 - ...but an image of the <u>average object</u>!
 - > How can we make a smooth transition in time?
 - » Do a "weighted average" over time t
- > How do we know what the average object looks like?
 - > We haven't a clue!
 - But we can often fake something reasonable
 » Usually required user/artist input

Idea #1: Cross-Dissolve

- > Interpolate whole images:
- $\operatorname{Image}_{halfway} = (1-t)^* \operatorname{Image}_1 + t^* \operatorname{Image}_2$
- > This is called **cross-dissolve** in film industry
- > But what if the images are not aligned?

Idea #2: Align, then Cross-Dissolve

- > Align first, then cross-dissolve
 - > Alignment using global warp picture still valid

Dog Averaging

> What to do?

- > Cross-dissolve doesn't work
- Global alignment doesn't work
 - » Cannot be done with a global transformation (e.g. affine)

> Feature matching!

- > Nose to nose, tail to tail, etc.
- > This is a local (non-parametric) warp

Idea #3: Local Warp, then Cross-Dissolve

- > Morphing procedure: *for every t,*
- 1. Find the average shape (the "mean dog")
 - > Local warping
- 2. Find the average color
 - Cross-dissolve the warped images

Local (Non-Parametric) Image Warping

- Need to specify a more detailed warp function
 - > Global warps were functions of a few (2,4,8) parameters
 - Non-parametric warps u(x,y) and v(x,y) can be defined independently for every single location x,y!
 - Once we know vector field *u*,*v* we can easily warp each pixel (use backward warping with interpolation)

Linear Interpolation

Mesh Warping

Image Warping – Non-Parametric

- > Move control points to specify a spline warp
- > Spline produces a smooth vector field

Warp Specification – Dense

- How can we specify the warp?
 Specify corresponding *spline control points*
 - *interpolate* to a complete warping function

But we want to specify only a few points, not a grid [Efros]

Warp Specification – Sparse

- How can we specify the warp?
 Specify corresponding *points*
 - *interpolate* to a complete warping function
 - How do we do it?

How do we go from feature points to pixels?

Triangular Mesh

- 1. Input correspondences at key feature points
- 2. Define a triangular mesh over the points
 - > Same mesh in both images!
 - > Now we have triangle-to-triangle correspondences
- 3. Warp each triangle separately from source to destination
 - How do we warp a triangle?
 - > 3 points = affine warp!

Triangulations

- A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and do not contain other points.
- There are an exponential number of triangulations of a point set.

An $O(n^3)$ Triangulation Algorithm

- > Repeat until impossible:
 - > Select two sites.
 - If the edge connecting them does not intersect previous edges, keep it.

"Quality" Triangulations

- Let $\alpha(T) = (\alpha_1, \alpha_2, ..., \alpha_{3t})$ be the vector of angles in the triangulation T in increasing order.
- A triangulation T_1 will be "better" than T_2 if $\alpha(T_1) > \alpha(T_2)$ lexicographically.
- > The Delaunay triangulation is the "best"
 - > Maximizes smallest angles

Improving a Triangulation

In any convex quadrangle, an *edge flip* is possible. If this flip *improves* the triangulation locally, it also improves the global triangulation.

 If an edge flip improves the triangulation, the first edge is called *illegal*.

$$\min_{1\leqslant i\leqslant 6}\alpha_i < \min_{1\leqslant i\leqslant 6}\alpha'_i.$$

1Etro

Illegal Edges

- > **Lemma:** An edge *pq* is illegal iff one of its opposite vertices is inside the circle defined by the other three vertices.
- > **Proof:** By Thales' theorem.

- > **Theorem:** A Delaunay triangulation does not contain illegal edges.
- > **Corollary:** A triangle is Delaunay iff the circle through its vertices is empty of other sites.
- > **Corollary:** The Delaunay triangulation is not unique if more than three sites are co-circular.

Naïve Delaunay Algorithm

- Start with an arbitrary triangulation. Flip any illegal edge until no more exist.
- > Could take a long time to terminate.

Delaunay Triangulation by Duality

- General position assumption: There are no four co-circular points.
- Draw the dual to the Voronoi diagram by connecting each two neighboring sites in the Voronoi diagram.
- Corollary: The DT may be constructed in O(nlogn) time.

MATLAB

- x = rand(1,10);
- y = rand(1,10);
- > TRI = delaunay(x,y);
- > triplot(TRI,x,y);
- > axis([0 1 0 1]);
- > hold on
- > plot(x,y,'or');
- > hold off

Image Morphing

- We know how to warp one image into the other, but how do we create a morphing sequence?
 - 1. Create an intermediate shape (by interpolation)
 - 2. Warp both images towards it
 - 3. Cross-dissolve the colors in the newly warped images

[Efros] ₃

Warp Interpolation

- > How do we create an intermediate warp at time *t*?
 - Assume t = [0,1]
 - > Simple linear interpolation of each feature pair
 - > (1-t)*p1+t*p0 for corresponding features p0 and p1

Warping Texture

- > Problem:
 - Given corresponding points in two images, how do we warp one into the other?
- > Two common solutions
 - 1. Piecewise linear using triangle mesh
 - 2. Thin-plate spline interpolation

Interpolation Using Triangles

Region of interest enclosed by triangles

Moving nodes changes each triangle

Just need to map regions between two triangles

Barycentric Coordinates

 $\mathbf{x} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$

 $\mathbf{x}' = \alpha \mathbf{a}' + \beta \mathbf{b}' + \gamma \mathbf{c}'$

 $\alpha + \beta + \gamma = 1$

Barycentric Coordinates

$$\begin{array}{l} \mathbf{x} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} \\ \alpha + \beta + \gamma = 1 \end{array} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

Three linear equations in 3 unknowns

Interpolation Using Triangles

- To find out where each pixel in new image comes from in old image
 - > Determine which triangle it is in
 - > Compute its barycentric coordinates
 - Find equivalent point in equivalent triangle in original image
- > Only well defined in region of 'convex hull' of control points

Thin-Plate Spline Interpolation

- Define a smooth mapping function (x',y')=f(x,y) such that
 - It maps each point (x,y) onto (x',y') and does something smooth in between
 - Defined everywhere, even outside convex hull of control points

$$f(x_i, y_i) = (x'_i, y'_i)$$
 for all $i = 1, ..., n$

Thin-Plate Spline Interpolation

Function has form

$$f(x,y) = (f_x(x,y), f_y(x,y))$$

$$f_x(x,y) = a_x + b_x x + \sum_{i=1}^n w_{x_i} r_i^2 \log r_i$$

$$f_y(x,y) = a_y + b_y y + \sum_{i=1}^n w_{y_i} r_i^2 \log r_i$$

where $r_i^2 = (x - x_i)^2 + (y - y_i)^2$

the parameters ($_x, b_x, w_{x_i}, a_y, b_y, w_{y_i}$) are found by solving the linear equations given by $f(x_i, y_i) = (x'_i, y'_i)$

Other Issues

- > Beware of folding
 - > You are probably trying to do something 3D-ish
- Morphing can be generalized into 3D
 - > If you have 3D data
- Extrapolation can sometimes produce interesting effects
 - > Caricatures

Idea #4: Regenerative Morphing

- Regenerative Morphing
 - > Shechtman, Rav-Acha, Irani, and Seitz
 - > CVPR 2010
- > Bidirectional similarity
- PatchMatch

Mosaic

Why Mosaic?

- > Are you getting the whole picture?
 - > Compact Camera FOV = $50 \times 35^{\circ}$

Why Mosaic?

- > Are you getting the whole picture?
 - > Compact Camera FOV = $50 \times 35^{\circ}$
 - > Human FOV = $200 \times 135^{\circ}$

Why Mosaic?

- > Are you getting the whole picture?
 - > Compact Camera FOV = $50 \times 35^{\circ}$
 - Human FOV = $200 \times 135^{\circ}$
 - > Panoramic Mosaic = $360 \times 180^{\circ}$

Mosaics: Stitching Images Together

A Pencil of Rays Contains All Views

Can generate any synthetic camera view as long as it has **the same center of projection**!

How to Do It?

- > Basic procedure
 - > Take a sequence of images from the same position
 - » Rotate the camera about its optical center
 - > Compute transformation between second image and first
 - > Transform the second image to overlap with the first
 - > Blend the two together to create a mosaic
 - > If there are more images, repeat
- > ...but **wait**, why should this work at all?
 - What about the 3D geometry of the scene?
 - > Why aren't we using it?

Aligning Images

Translations are not enough to align the images

Image Re-projection

- > The mosaic has a natural interpretation in 3D
 - > The images are re-projected onto a common plane
 - > The mosaic is formed on this plane
 - > Mosaic is a **synthetic wide-angle camera**

Image Re-projection

- Basic question
 - > How to relate two images from the same camera center?
 - » how to map a pixel from PP1 to PP2

> Answer

- > Cast a ray through each pixel in PP1
- > Draw the pixel where that ray intersects PP2

But don't we need to know the geometry of the two planes in respect to the eye?

Observation: Rather than thinking of this as a 3D re-projection, think of it as a 2D **image warp** from one image to another

Back to Image Warping

Which t-form is the right one for warping PP1 into PP2? e.g. translation, Euclidean, affine, projective

Translation

Affine

Projective

2 unknowns

6 unknowns

8 unknowns

Homography

- A: Projective mapping between any two PPs with the same center of projection
 - > rectangle should map to arbitrary quadrilateral
 - > parallel lines aren't
 - but must preserve straight lines
 - > same as: project, rotate, re-project

called Homography

$$\begin{bmatrix} w \ x' \\ w \ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$\mathbf{p}' \qquad \mathbf{H} \qquad \mathbf{p}$$

To apply a homography ${f H}$

- Compute $\mathbf{p}' = \mathbf{H}\mathbf{p}$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

Image Warping with Homographies

Image Rectification

To unwarp (rectify) an image

- Find the homography H given a set of p and p^\prime pairs
- How many correspondences are needed?
- Tricky to write **H** analytically, but we can <u>solve</u> for it!
 - Find such H that "best" transforms points p into p^\prime
 - Use least-squares! (over-constrained)

Solving for Homographies

$$\mathbf{p}' = \mathbf{H}\mathbf{p}$$
$$\begin{bmatrix} w \ x' \\ w \ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- > Can set scale factor i=1. So, there are 8 unkowns.
- > Set up a system of linear equations:

Ah = b

- where vector of unknowns $\mathbf{h} = [a, b, c, d, e, f, g, h]^T$
- > Need at least 8 eqs, but the more the better...
- > Solve for h. If over-constrained, solve using least-squares:

$$h^* = \arg\min_{\mathbf{h}} \|\mathbf{A}\mathbf{h} - \mathbf{b}\|^2$$

> Can be done in MATLAB using "\" command

Fun with Homographies

original image

St.Petersburg photo by A. Tikhonov

virtual camera rotations

Panoramas

- 1. Pick one image (red)
- 2. Warp the other images towards it (usually, one by one)
- 3. Blend

Changing Camera Center

Planar Scene (or Far Away)

- > PP3 is a projection plane of both centers of projection, so we are OK!
- > This is how big aerial photographs are made

Planar Mosaic

Application of Homography in Graphics

Anamorphosis

海洋龍宮 Art by Kurt Wenner Photo by 魚夫

http://en.wikipedia.org/wiki/Anamorphosis

http://www.illusionworks.com/

http://www.ted.com/talks/lang/eng/al_seckel_says_our_brains_are_mis_wired.html

István Orosz: Mirror Anamorphosis with Column

[wikipedia] 72
Another Example of Homographies

created by Brett Allen

Concentric Mosaic [Shum & He]

Construction of a Concentric Mosaic

Rendering a Novel View

Sweep Panorama